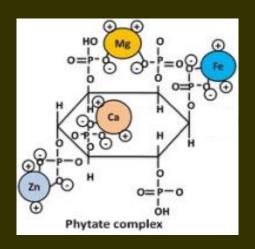
Effects of different monophosphates supplementation on growth, feed utilization, nutrient digestibility, mineral retention and metalo-enzyme gene expressions in juvenile rainbow trout, *Oncorhynchus mykiss*

Md. Sakhawat Hossain

Post doctoral researcher
Institute of Life, Earth and Environment
Research Unit in Environmental & Evolutionary Biology
University of Namur

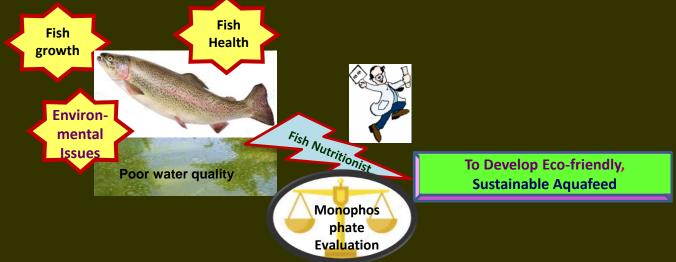
Background

Fishmeal (FM)


> Most preferred protein source in aquafeed.

➤ Modern aquafeed formulations include a lower content of FM and higher inclusion of alternative plant protein sources.

Plant proteins as alternative FM sources used in aquafeed.



Phytate (myo-inositol hexaphosphate) is the principal storage form of P in plant seeds which are nutritionally unavailable for mono-gastric animals.

➤ Inorganic phosphates (mon/di/tri basic) are added to formulated animal feeds to accurately cover mineral requirements, especially P.

Considering bioavailability of minerals, monobasic form is more available than di or tri basic ones.

Specific objectives

- To evaluate the effects of different dietary monophosphates on growth, feed utilization, digestibility and mineral retention of juvenile rainbow trout.
- To observe different monophosphates supplementation effects on the metalo-enzyme genes expression of rainbow trout.

Summary of methodologies

Wet laboratory of ILEE, University of Namur, Belgium. **Experimental site:**

Re-circulatory system (Flow rate 1.5 L min⁻¹) **Experimental**

system

Four (4) **Treatments:**

Replication: Three (3)

Duration: 60 days

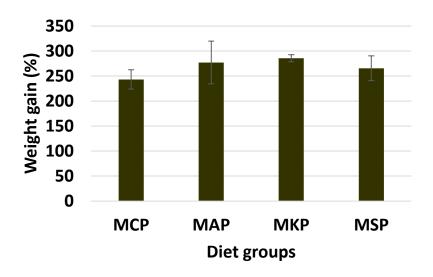
Initial weight: $18.5 \pm 0.1 \text{ g}$

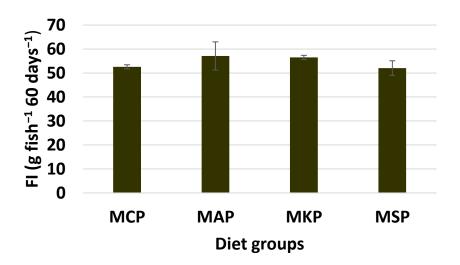
26 Fish/ Aquarium **Stocking density:**

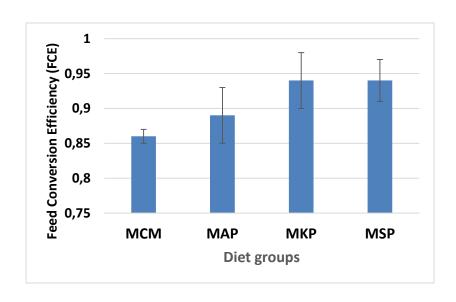
100 L **Aquarium size**

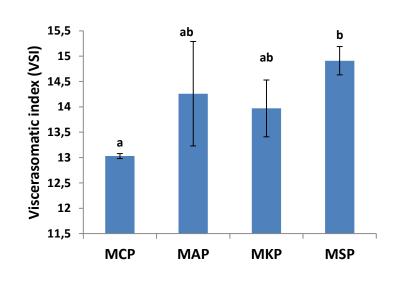
Re-circulatory system

Rainbow trout juveniles

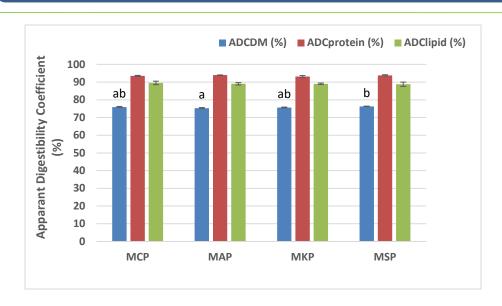

Experimental diets

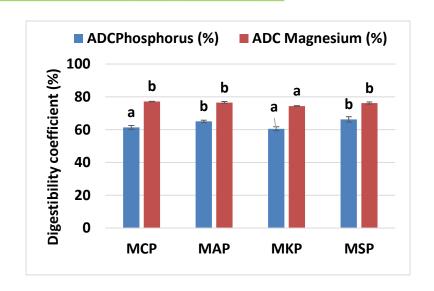

Satiation feeding; Twice daily Feeding regime:

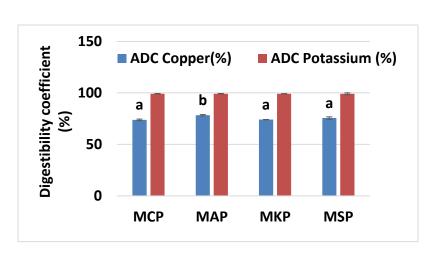

Feces collection: Siphoning process (5-6 h after feeding)

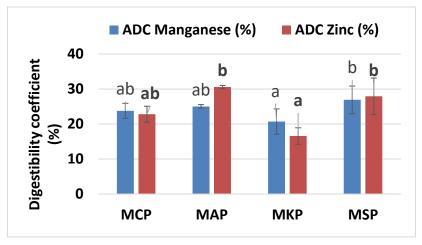

Collection of feces

Findings: Growth Performances

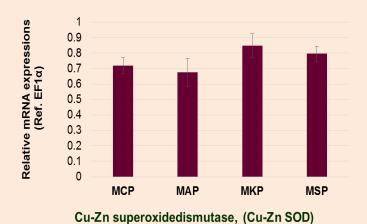


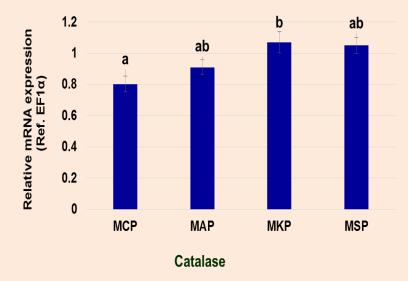






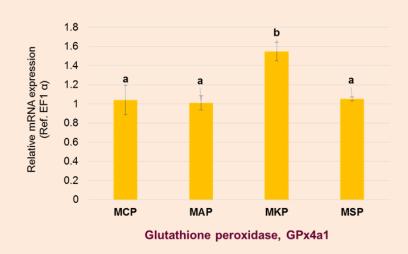
Findings: Digestibility Co-efficient


Figures: Apparent Digestibility Coefficient of rainbow trout fed experimental diets.


Findings: Minerals Retention

Parameters	Diet groups			
	MCP	MAP	MKP	MSP
Phosphorous (P)	14.37±4.54a	35.86±8.43ab	58.71±8.58b	29.69±9.09ab
Calcium (Ca)	12.10±8.16	45.86±14.97	66.39±13.46	25.90±11.97
Potassium (K)	18.94±5.03	28.34±1.98	28.68±1.09	21.05±4.35
Magnesium (Mg)	7.01±1.90a	17.54±3.23ab	25.75±2.58b	11.34±3.21a
Manganese (Mn)	0.41±0.22	1.15±0.31	2.18±0.85	0.64±0.30
Zinc (Zn)	2.33±0.55a	6.06±0.95b	5.55±0.31ab	3.96±1.02ab
Iron (Fe)	0.80±0.29	1.94±0.30	2.11±0.48	1.25±0.37
Copper (Cu)	1.92±0.50a	4.59±0.58b	4.25±0.15b	3.48±0.48ab

- ❖ Mineral gain (MG, g fish⁻¹) = {(final dry matter of fish (g) × final whole body mineral content (%)/100) − (initial weight in DM (g) × initial whole body mineral content (%)/100)}
- ★ Mineral retention (MR, % of intake) = {(Mineral gain (MG, g fish-1) / Mineral supply (g fish-1) } × 100


Hepatic metalo-enzyme genes expression

Glutathione peroxidase, GPx1b1

Take Home Messages....

- ➤ Among different monophosphate supplements MAP and MKP improved the growth and feed utilization performances
- ➤ MAP and MSP showed significantly higher minerals digestibility in comparison to other supplements.
- ➤ Minerals retention was significantly higher mostly in MKP supplemented group.
- ➤ Hepatic metalo-enzyme genes (Catalase, GPX1b1 and GPx4a1) showed significantly higher relative mRNA expressions in fish fed MKP and MSP diet groups.
- Finally, we concluded that monophosphates (MAP, MKP and MSP) support improved overall performance of rainbow trout compared to MCP.

